20 research outputs found

    Constrained Bayesian Active Learning of Interference Channels in Cognitive Radio Networks

    Get PDF
    In this paper, a sequential probing method for interference constraint learning is proposed to allow a centralized Cognitive Radio Network (CRN) accessing the frequency band of a Primary User (PU) in an underlay cognitive scenario with a designed PU protection specification. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback indicates whether the probing-induced interference is harmful or not and can be used to learn the PU interference constraint. The cognitive part of this sequential probing process is the selection of the power levels of the Secondary Users (SUs) which aims to learn the PU interference constraint with a minimum number of probing attempts while setting a limit on the number of harmful probing-induced interference events or equivalently of NACK packet observations over a time window. This constrained design problem is studied within the Active Learning (AL) framework and an optimal solution is derived and implemented with a sophisticated, accurate and fast Bayesian Learning method, the Expectation Propagation (EP). The performance of this solution is also demonstrated through numerical simulations and compared with modified versions of AL techniques we developed in earlier work.Comment: 14 pages, 6 figures, submitted to IEEE JSTSP Special Issue on Machine Learning for Cognition in Radio Communications and Rada

    Active Learning in Cognitive Radio Networks

    Get PDF
    In this thesis, numerous Machine Learning (ML) applications for Cognitive Radios Networks (CRNs) are developed and presented which facilitate the e cient spectral coexistence of a legacy system, the Primary Users (PUs), and a CRN, the Secondary Users (SUs). One way to better exploit the capacity of the legacy system frequency band is to consider a coexistence scenario using underlay Cognitive Radio (CR) techniques, where SUs may transmit in the frequency band of the PU system as long as the induced to the PU interference is under a certain limit and thus does not harmfully a ect the legacy system operability

    A Bayesian Poisson-Gaussian Process Model for Popularity Learning in Edge-Caching Networks

    Get PDF
    Edge-caching is recognized as an efficient technique for future cellular networks to improve network capacity and user-perceived quality of experience. To enhance the performance of caching systems, designing an accurate content request prediction algorithm plays an important role. In this paper, we develop a flexible model, a Poisson regressor based on a Gaussian process, for the content request distribution. The first important advantage of the proposed model is that it encourages the already existing or seen contents with similar features to be correlated in the feature space and therefore it acts as a regularizer for the estimation. Second, it allows to predict the popularities of newly-added or unseen contents whose statistical data is not available in advance. In order to learn the model parameters, which yield the Poisson arrival rates or alternatively the content \textit{popularities}, we invoke the Bayesian approach which is robust against over-fitting. However, the resulting posterior distribution is analytically intractable to compute. To tackle this, we apply a Markov Chain Monte Carlo (MCMC) method to approximate this distribution which is also asymptotically exact. Nevertheless, the MCMC is computationally demanding especially when the number of contents is large. Thus, we employ the Variational Bayes (VB) method as an alternative low complexity solution. More specifically, the VB method addresses the approximation of the posterior distribution through an optimization problem. Subsequently, we present a fast block-coordinate descent algorithm to solve this optimization problem. Finally, extensive simulation results both on synthetic and real-world datasets are provided to show the accuracy of our prediction algorithm and the cache hit ratio (CHR) gain compared to existing methods from the literature

    A Feature-Based Bayesian Method for Content Popularity Prediction in Edge-Caching Networks

    Get PDF
    Edge-caching is recognized as an efficient technique for future wireless cellular networks to improve network capacity and user-perceived quality of experience. Due to the random content requests and the limited cache memory, designing an efficient caching policy is a challenge. To enhance the performance of caching systems, an accurate content request prediction algorithm is essential. Here, we introduce a flexible model, a Poisson regressor based on a Gaussian process, for the content request distribution in stationary environments. Our proposed model can incorporate the content features as side information for prediction enhancement. In order to learn the model parameters, which yield the Poisson rates or alternatively content popularities, we invoke the Bayesian approach which is very robust against over-fitting. However, the posterior distribution in the Bayes formula is analytically intractable to compute. To tackle this issue, we apply a Monte Carlo Markov Chain (MCMC) method to approximate the posterior distribution. Two types of predictive distributions are formulated for the requests of existing contents and for the requests of a newly-added content. Finally, simulation results are provided to confirm the accuracy of the developed content popularity learning approach.Comment: arXiv admin note: substantial text overlap with arXiv:1903.0306

    Interference Constraint Active Learning with Uncertain Feedback for Cognitive Radio Networks

    Get PDF
    In this paper, an intelligent probing method for interference constraint learning is proposed to allow a centralized cognitive radio network (CRN) to access the frequency band of a primary user (PU) in an underlay cognitive communication scenario. The main idea is that the CRN probes the PU and subsequently eavesdrops the reverse PU link to acquire the binary ACK/NACK packet. This feedback is implicit channel state information of the PU link, indicating whether the probinginduced interference is harmful or not. The intelligence of this sequential probing process lies in the selection of the power levels of the secondary users, which aims to minimize the number of probing attempts, a clearly active learning (AL) procedure, and expectantly the overall PU QoS degradation. The enhancement introduced in this paper is that we incorporate the probability of each feedback being correct into this intelligent probing mechanism by using a multivariate Bayesian AL method. This technique is inspired by the probabilistic bisection algorithm and the deterministic cutting plane methods (CPMs). The optimality of this multivariate Bayesian AL method is proven and its effectiveness is demonstrated through numerical simulations. Computationally cheap CPM adaptations are also presented, which outperform existing AL methods

    Centralized Power Control in Cognitive Radio Networks Using Modulation and Coding Classification Feedback

    Get PDF
    In this paper, a centralized Power Control (PC) scheme and an interference channel learning method are jointly tackled to allow a Cognitive Radio Network (CRN) access to the frequency band of a Primary User (PU) operating based on an Adaptive Coding and Modulation (ACM) protocol. The learning process enabler is a cooperative Modulation and Coding Classification (MCC) technique which estimates the Modulation and Coding scheme (MCS) of the PU. Due to the lack of cooperation between the PU and the CRN, the CRN exploits this multilevel MCC sensing feedback as implicit channel state information (CSI) of the PU link in order to constantly monitor the impact of the aggregated interference it causes. In this paper, an algorithm is developed for maximizing the CRN throughput (the PC optimization objective) and simultaneously learning how to mitigate PU interference (the optimization problem constraint) by using only the MCC information. Ideal approaches for this problem setting with high convergence rate are the cutting plane methods (CPM). Here, we focus on the analytic center cutting plane method (ACCPM) and the center of gravity cutting plane method (CGCPM) whose effectiveness in the proposed simultaneous PC and interference channel learning algorithm is demonstrated through numerical simulations
    corecore